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Abstract

There exists a gap in the literature of Physics Education: the bridge between
Maxwell’s Equations and Einstein’s Theory of Special Relativity remains obscure in
many Undergraduate Electromagnetics textbooks even today. Furthermore, in the few
textbooks that do cover it, many have failed to take advantage of applying compu-
tational programming to better highlight the relationship between Maxwell and Ein-
stein. Although much of the mathematics in this paper has been tackled previously
in the literature, a visual demonstration of these concepts via programming suitable
for undergraduates has never been applied, thus leaving a serious gap in the literature.
The author seeks to resolve this gap by illustrating three fundamental principles that
make apparent the bridge from Maxwell to Einstein via computational programming in
Python: (1) Origin of the Lorentz Gamma Factor from Maxwell’s Equations, (2) Time
Dilation from a Classic Electromagnetics Scenario, and (3) Derivation of the Displace-
ment Current via the Biot-Savart Law and Special Relativity. The visual application
of these ideas pose many pedagogical opportunities and extensions in the classroom,
which are also discussed. All computational visualizations are available here Should
the above link fail, a fallback option is provided here

1 Introduction

It’s been 115 years since the inception of Einstein’s Special Theory of Relativity [1] (STR)
and another 155 years since Maxwell’s Unification of the Laws of Electromagnetism [2]. And
yet, the relationship between these two fundamental laws of the universe remain obscure
to many Physics and Engineering students to this day. The problem is two-fold: a) Few
undergraduate electromagnetics textbooks highlight the inseperable relationship between
Maxwell and Einstein’s Theories of EM and STR [3], and b) the few that do have failed to
take advantage of the digital revolution [4] [5]. Instead, many supply antiquated diagrams
that fail to scaffold intuition, as opposed to actual programs that reinforce both a student’s
theoretical understanding and intuitive grasp [6]. This paper seeks to resolve this gap in
the literature of Physics Education by illustrating three fundamental elements that highlight
the bridge between Maxwell and Einstein, all via computational programming: (1) Origin
of the Lorentz Gamma Factor from Maxwell’s Equations, (2) Time Dilation from a Classic
Electromagnetics Scenario, and (3) Derivation of the Displacement Current via the Biot-
Savart Law.
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2 Literature Review

It is a well-documented fact that many students struggle not only with the bridge between
Maxwell’s Equations and Einstein’s Special Theory of Relativity, but with Maxwell’s Equa-
tions themselves! [10, 11] The fact of the matter is that there exists an inherent gap in
Physics Education – despite the introduction of Visual Computing some 20 years ago and
extensive documentation and resources on the subject [22], few if any classes have adapted
the teaching of these critical ideas to this new digital age [23] [24]. Instead, students are left
trying to haphazardly conjecture what Gaussian Surface or Amperian Loop to draw given
the symmetry of a surface, when the fundamental gap lies in the execution of the material,
not its difficulty [12]. Indeed, we must make EM and STR hands-on, much as Common
Core has done to the Algebra curriculum [16]. The best approach to making the ideas of
EM and STR tangible without the hassle of experimentation (i.e., collecting data, calculat-
ing error, calibrating equipment, etc.) is computational programming. Indeed, the advent
of languages and libraries such as Python, Plot.ly, GlowScript, and WebGL has made the
transition accessible, if not downright trivial [21].

To demonstrate the utility of using Computational Programming to highlight the bridge
between Maxwell’s Equations and the Special Theory of Relativity, this paper tackles three
elements of that bridge that have traditionally served as barriers for undergraduate students:

1. Lorentz Gamma Factor from Maxwell’s Equations

2. Time Dilation from Electromagnetic Scenario

3. Displacement Current from Biot-Savart Law and Special Relativity

Each of these principles are associated with a host of student misconceptions, many of
which have been extensively documented – conundrums such as whether the Displacement
Current is a real current [20] and produces a magnetic field or how an electric field could
be analogous to a magnetic field depending on the reference frame of an observer. All these
misconceptions and confusions may be addressed using the computational visualizations
outlined within the paper. As such, the student will emerge with a much greater intuitive
grasp of the bridge between Maxwell’s Equations and Einstein’s Theory of Special Relativity.
We begin our exploration of this bridge with the derivation of the Lorentz Transformation
from Maxwell’s Equations.

3 γ from Maxwell’s Equations

Deriving the Lorentz Transformations provides one a special insight into Einstein’s Special
Theory of Relativity. In fact, the famous Gamma factor that gives rise to the Lorentz Trans-
formations is contained within Maxwell’s Equations. As such, deriving γ from Maxwell’s
Equations is the foundation of the bridge between Maxwell and Einstein, and it is the prin-
ciple we explore first.

The motivating basis for the Lorentz Transformations is that the Galilean Transforma-
tions fails to maintain the invariance of Maxwell’s Equations. Many students grapple with
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the inconsistency of the Galilean Transformations, but to no avail. Indeed, many struggle
with the basic Galilean Principle of Relativity itself [29]. The resolution to this problem
is not supplying students with yet another geometric representation of the Galilean Trans-
forms, but providing an actual interactive visualization of it. By interacting with the abstract
principle of Relativity – even at the basic level of Galilean Transforms – students will begin
scaffolding a much stronger intuition for the greater picture of relativity.

The derivation of the Lorentz Gamma Factor from Maxwell’s Equations begins with
Maxwell’s Equations themselves, from which the Wave Equation will be derived. The
Galilean Transformations are then introduced via an interactive, computational simulation
that enables the user to provide a velocity for two observers in relative motion witnessing
an event E. Given that intuitive basis for the Galilean Transformation, we test whether the
Wave Equation is invariant under the Galilean Transformation. Once this fails, we test the
Fitzgerald Transformations, and finally the Lorentz Transformations – a full derivation is
supplied for all aforementioned transformations. The final result is the Lorentz Gamma Fac-
tor from Maxwell’s Equations, a satisfactory result that will provide students a theoretical
and intuitive understanding.

To derive the γ from Maxwell’s Equations, we begin with a statement of Maxwell’s 4
Equations of Electromagnetism in their integral form.

ΦE =

∮
E · dA =

qenc
E0

ΦB =

∮
B · dA = 0∮

E · dS = −dΦB

dt∮
B · dS = µ0E0

dΦE

dt
+ µ0J

(1)

These four equations encompass all of electromagnetic theory. And indeed, they serve as the
bridge to Special Relativity. We convert the integral form of the equations to their differ-
ential form via Green’s and Stokes Theorem. For brevity, the differential form of Maxwell’s
Equations are given as

∇ · E =
ρ

E0
∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0E0
∂E

∂t
+ µ0J

(2)

With the differential form of Maxwell’s Equations, we now proceed to deriving the Wave
Equation, which describes the transverse nature of Electromagnetic Waves. After deriving
the Wave Equation, we seek to visualize the Galilean Transformations (GT) and apply it
to the Wave Equation to test whether Maxwell’s Equations hold invariant under the GT.
The Fitzgerald and Lorentz Transformations are then applied to the Wave Equation in the
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hopes of maintaining its invariance. Finally, the utility and applications of the Lorentz
Transformations are briefly investigated through Length Contraction, Time Dilation, and
the constancy of the speed of light.

3.1 The Wave Equation

From hereon, we can derive the second-order partial differential that is the Wave Equation.

∇×B = µ0E0 ∂E∂t + µ0J (3)

We now convert to light units where c = 1. Since µ0E0 = 1
c2

, we thus have that ∇ × B =
∂E
∂t

+ µ0J . We begin by considering Ampere’s Law in a vacuum (i.e., J, ρ = 0)

∇×B = ∂E
∂t

+ µ0J
∇×B = Et
∂
∂t

(∇×B) = Ett
∇×Bt = Ett
∇× ∂B

∂t
= Ett

−∇× (∇× E) = Ett
−∇(∇ · E) +∇2E = Ett

(4)

And thus we have the wave equation as

Ett = ∇2E (5)

We now test whether the Wave Equation is invariant under the Galilean Transformation.
First and foremost, however, we must understand the Galilean Transformations intuitively.
To do so, we encounter our first computational programming exercise: creating an interactive
visualization of the Galilean Transformations.

3.2 Visualizing the Galilean Transformation

Our goal is to construct a visualization of the Galilean Transformation suitable for under-
graduates, that enables them to grasp the key idea of relativity – all observers in relative
motion share the same time and conjecture identical physical laws for the universe, but wit-
ness events at a different location. Our visualization will be based on the following scenario:

Rob (R) and Greg (G) are in relative motion to each other. R is moving down
G’s ζ axis. R has coordinates (t, x, y, z) and G has coordinates (τ, ξ, η, ζ). They
synchronize their clocks at an Event O such that τ = t = 0. How can we express
an external event E in terms of R and G’s position?

Traditional textbooks would offer the answer in terms of the Spacetime coordinates of R and
G. We an alternative, more intuitive approach for the reader – one which utilizes Python to
visualize the behavior of both observers relative to each other. In doing so, not only will the
student understand the mechanics of the Galilean Transformations, but also the intuition
behind it [15] [14] [13].
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To do so, we create the spacetime diagrams of both observers via the Plot.ly library of
Python. The prerequisites include creating a scatter trace of text, asking the user for the
coordinates of the Event E, velocities of both observers, and setting the range of the figure.
The code has been shortened for brevity, but a minimal working example may consist of the
following:

E_xcoord = int(input ("X-Coordinate of Event: "))

Rob_Vel = int(input ("Rob's Velocity: "))

fig = go.Figure()

fig.add_trace(go.Scatter(

x=[-8.5,-8.5,.6,8,8,.3,-.3,E_xcoord+.3],

y=[8,0,1,.7,-.7,8,8,E_ycoord+.5],

text=["Rob", "Greg",r"$\uptau = t=0$",r"$\uptau$",r"$t$",

r"$\zeta$",r"$z$",r"$E$"],

mode="text",

))

fig.update_xaxes(range=[-10, 10])

We then plot the Event E from the perspective of Greg:

fig.add_trace(

go.Scatter(

mode='markers',

x=[E_xcoord],

y=[E_ycoord],

marker=dict(

color='LightSkyBlue',

size=15

),

showlegend=False

)

)

Projecting the space-time coordinates of Event E for both Greg and Rob is trivial; for
instance, for the space projection of Event E onto Greg’s Greek Coordinates, we simply
have

fig.add_shape(

type="line",

x0=0,

y0=E_ycoord,

x1=E_xcoord,

y1=E_ycoord,

line=dict(
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color="MediumPurple",

width=4,

dash="dot",

)

)

What’s more interesting are the space-time projections for Rob, which encompass within
them the exact Galilean Transformations!

fig.add_shape(

type="line",

x0=E_xcoord,

y0=E_ycoord,

x1=0,

y1=(E_ycoord-(Rob_Vel*E_xcoord)),

line=dict(

color="yellowgreen",

width=4,

dash="dot",

)

)

The result is a spacetime diagram of both observers from the reference frame of Greg. An
equivalent diagram may be drawn for Rob.

The actual code of the program contains the Galilean Transformations, which may be
summarized by the Linear Transformation T as

T :

(
τ

ζ

)
→
(
t
z

)
=

(
1 0
v 1

)(
τ

ζ

)
=

(
τ

vτ + ζ

)
=

(
t
z

)
(6)

We thus find that both observers share the same time, but witness E at different locations.

τ = t (7)

vτ + ζ = z (8)
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3.3 Application of GT to Wave Equation

The Wave Equation suffers under the Galilean Transformations, failing to maintain its in-
variance. To understand why, we must perform the Galilean Transformations on the Wave
Equation to verify its invariance. We simplify our analysis by considering a wave dependent
only on the z-axis and time.

∂2E

∂2t
= ∇2E (9)

Ett = Exx + Eyy + Ezz (10)

Ett = Ezz (11)

Ett − Ezz = 0 (12)

We reframe this physical law in the reference frame of a moving observer. The Galilean
Transformation has

ζ = z + vt, τ = t (13)

E(t, z) = ε(t, z + vt) = ε(τ, ζ) (14)

We use the multivariable chain rule to verify whether Ett−Ezz = 0. We begin by considering
Et as

E(t, z) = ε(t, z + vt) = ε(τ, ζ) (15)

Et =
∂ε

∂τ
· ∂τ
∂t

+
∂ε

∂ζ
· ∂ζ
∂t

(16)

Et = ετ + εζ ·
∂(z − vt)

∂t
= ετ − vεζ (17)

We proceed to finding Ett:

Ett =
∂2E

∂t2
=

∂

∂t
(ετ − vεζ) (18)

Finding Ett requires evaluating ∂
∂t

(ετ ) and ∂
∂t

(−vεζ) as follows

∂

∂t
(ετ ) =

∂(ετ )

∂τ
· ∂τ
∂t

+
∂(ετ )

∂ζ
· ∂ζ
∂t

(19)

∂

∂t
(ετ ) = εττ + ετζ ·

∂(z − vt)
∂t

= εττ − vετζ (20)

∂

∂t
(−vεζ) =

∂(−vεζ)
∂τ

· ∂τ
∂t

+
∂(−vεζ)
∂ζ

· ∂ζ
∂t

(21)
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∂

∂t
(−vεζ) = −vεζτ +−vεζζ ·

∂(z − vt)
∂t

= −vεζτ +−vεζζ · (−v) (22)

∂

∂t
(−vεζ) = −vεζτ + v2εζζ (23)

We find that Ett becomes

Ett =
∂

∂t
(ετ ) +

∂

∂t
(−vεζ) = (εττ − vετζ)− (−vεζτ + v2εζζ) (24)

Ett = εττ − vετζ + vεζτ − v2εζζ (25)

Likewise, we must now find Ezz by first considering Ez. Note that τ = t = 0 and that τ

has no dependence on z, thus making τz = 0 and by extension, Eττz = 0. By the Galilean
Transformation, ζ = z − vt, and thus we have

Ez =
∂ε

∂τ
· ∂τ
∂z

+
∂ε

∂ζ
· ∂ζ
∂z

(26)

Ez = ετ · 0 + εζ ·
∂(z − vt)

∂z
= εζ (27)

We take the partial derivative of Ez in respect to z to find Ezz

Ezz =
∂2E

∂z2
=

∂

∂t
(εζ) (28)

∂

∂t
(εζ) =

∂(εζ)

∂τ
· ∂τ
∂z

+
∂(εζ)

∂ζ
· ∂ζ
∂z

(29)

∂

∂t
(εζ) = εζτ · 0 + εζζ ·

∂(z − vt)
∂z

= εζζ (30)

We thus conclude that the Galilean Transformations fail to preserve the Wave Equation as

Ett − Ezz = εττ − vετζ + vεζτ − v2εζζ − εζζ 6= 0 (31)

3.4 Application of FT to Wave Equation

We thus resort to the Fitzgerald Transformation (FT), coined as an ad-hoc correction [9] to
the Galilean Transformation by George Francis Fitzgerald in his 1889 paper on the Ether
and the Earth’s Atmosphere [8, 30]. Fitzgerald published a colloquial paper, stating that
length contracted ”by an amount depending on the square of the ratio of their velocities to
that of light”, which we may translate as

E(t, z) = ε(t,
z√

1− v2
− vt√

1− v2
) = ε(τ, ζ) (32)
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To verify whether the Fitzgerald Transformations holds the Wave Equation invariant, we
must verify whether Ett − Ezz = 0 by considering Et as

Et =
∂ε

∂τ
· ∂τ
∂t

+
∂ε

∂ζ
· ∂ζ
∂t

(33)

Et = ετ + εζ ·
∂( z√

1−v2 −
vt√
1−v2 )

∂t
= ετ + εζ · (−

v√
1− v2

) (34)

Et = ετ −
vεζ√
1− v2

(35)

Finding Ett will require an extensive breakdown of each of Et’s terms by taking the partial
derivative of each term in respect to time, using the multivariable chain rule.

Ett =
∂2E

∂t2
=

∂

∂t
(ετ −

vεζ√
1− v2

) (36)

We begin by finding the partial derivative of the ετ term in respect to time:

∂

∂t
(ετ ) =

∂(ετ )

∂τ
· ∂τ
∂t

+
∂(ετ )

∂ζ
· ∂ζ
∂t

(37)

∂

∂t
(ετ ) = εττ + ετζ ·

∂( z√
1−v2 −

vt√
1−v2 )

∂t
= εττ + ετζ · (−

v√
1− v2

) (38)

∂

∂t
(ετ ) = εττ −

vετζ√
1− v2

(39)

We proceed to evaluating the partial derivative of − vεζ√
1−v2 in respect to time

∂

∂t
(− vεζ√

1− v2
) =

∂(− vεζ√
1−v2 )

∂τ
· ∂τ
∂t

+
∂(− vεζ√

1−v2 )

∂ζ
· ∂ζ
∂t

(40)

∂

∂t
(− vεζ√

1− v2
) = − vεζτ√

1− v2
+ (− vεζζ√

1− v2
·
∂( z√

1−v2 −
vt√
1−v2 )

∂t
) (41)

∂

∂t
(− vεζ√

1− v2
) = − vεζτ√

1− v2
+ (− vεζζ√

1− v2
· (− v√

1− v2
)) = − vεζτ√

1− v2
+

v2εζζ
1− v2

(42)

We can thus conclude that the second degree partial derivative of the Electric Field in respect
to time is

Ett =
∂

∂t
(ετ ) +

∂

∂t
(− vεζ√

1− v2
) = εττ −

vετζ√
1− v2

− vεζτ√
1− v2

+
v2εζζ
1− v2

(43)

= εττ −
2vετζ√
1− v2

+
v2εζζ
1− v2

(44)

We repeat the process for finding Ez, which we can expand via the multivariable chain rule
as

Ez =
∂ε

∂τ
· ∂τ
∂z

+
∂ε

∂ζ
· ∂ζ
∂z

(45)
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In doing so, we easily compute Ez to be

Ez = ετ · 0 + εζ ·
∂( z√

1−v2 −
vt√
1−v2 )

∂z
=

εζ√
1− v2

(46)

All that remains is to find Ezz by computing a few more partial derivatives.

∂

∂z
(Ez) =

∂2E

∂z2
=

∂

∂z
(

εζ√
1− v2

) (47)

∂

∂z
(

εζ√
1− v2

) =
∂(

εζ√
1−v2 )

∂τ
· ∂τ
∂z

+
∂(

εζ√
1−v2 )

∂ζ
· ∂ζ
∂z

(48)

∂

∂z
(

εζ√
1− v2

) =
εζτ√
1− v2

· 0 +
εζζ√

1− v2
·
∂( z√

1−v2 −
vt√
1−v2 )

∂z
(49)

∂

∂z
(

εζ√
1− v2

) =
εζζ√

1− v2
· 1√

1− v2
=

εζζ
1− v2

(50)

Ezz =
εζζ

1− v2
(51)

Finally, we may verify whether the Fitzgerald Transformation does indeed preserve the
invariance of the Wave Equation by checking whether Ett−Ezz = 0 via simple substitution:

Ett − Ezz = (εττ −
2vετζ√
1− v2

+
v2εζζ
1− v2

)− (
εζζ

1− v2
) = εττ −

2vετζ√
1− v2

+
εζζ(v

2 − 1)

1− v2
(52)

Ett − Ezz = εττ −
2vετζ√
1− v2

+
εζζ(v − 1)(v + 1)

(1− v)(1 + v)
= εττ − εζζ −

2vετζ√
1− v2

6= 0 (53)

Alas, even the Fitzgerald Transformation has failed to correct the Galilean Transformation.
And yet we may retain some semblance of hope upon examining the matrix analogue of the
Fitzgerald Transformation

F : R2 → R2 =

(
1 0
−v√
1−v2

1√
1−v2

)(
t
z

)
=

(
t

z−vt√
1−v2

)
=

(
τ
ζ

)
(54)

It’s worth examining the structure of F . The Galilean Transformations held everything same
for all observers – time, length, velocity. George Francis Fitzgerald took a leap and made the
unconventional wager that not all observers measure lengths the same, likely inspired by his
Electrical Engineer friend Oliver Heaviside [7] – who also condensed Maxwell’s 16 Equations
into the 4 Macroscopic ones we know today. Hendrik Lorentz independently made the next
leap – an even bolder claim that time itself was subject to relativistic changes, via the Lorentz
Transformation

L : R2 → R2 :

(
1√

1−v2
−v√
1−v2

−v√
1−v2

1√
1−v2

)
(55)

Immediately, we find the transformation to be symmetric such that L = LT and L = L−1.
But does it maintain the invariance of the wave equation? To verify, we must execute the
transformation on the (t, z) coordinates of one observer’s reference frame.
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3.5 Application of LT to Wave Equation

We now consider the Lorentz Transformations (LT) and test whether the Wave Equation
holds invariant under L.

L : R2 → R2 :

(
1√

1−v2
−v√
1−v2

−v√
1−v2

1√
1−v2

)(
t
z

)
=

(
t−vz√
1−v2
z−vt√
1−v2

)
(56)

E(t, z) = ε(τ, ζ) = ε(
t− vz√
1− v2

,
z − vt√
1− v2

) (57)

We consider once again the axiom Ett − Ezz = 0 and validate the Lorentz Transformations
in light of the wave equation by first considering Et as

Et =
∂ε

∂τ
· ∂τ
∂t

+
∂ε

∂ζ
· ∂ζ
∂t

(58)

The two observers’ times are no longer equivalent. Indeed, by the Lorentz Transformation,
we now have time dilated as one’s velocity v approaches the speed of light c.

Et = ετ ·
∂( t√

1−v2 −
vz√
1−v2 )

∂t
+ εζ ·

∂( z√
1−v2 −

vt√
1−v2 )

∂t
(59)

Et = ετ ·
1√

1− v2
+ εζ · (−

v√
1− v2

) =
ετ − εζv√

1− v2
(60)

Taking the second partial derivative of the Electric Field in respect to time, we have

Ett =
∂

∂τ
(Et) =

∂

∂τ
(
ετ − εζv√

1− v2
) (61)

∂

∂τ
(
ετ − εζv√

1− v2
) =

∂(
ετ−εζv√
1−v2 )

∂τ
· ∂τ
∂t

+
∂(

ετ−εζv√
1−v2 )

∂ζ
· ∂ζ
∂t

(62)

Recall again that time and length are now relativistic, and must be duly replaced with their
respective expressions

∂

∂τ
(
ετ − εζv√

1− v2
) =

εττ − εζτv√
1− v2

·
∂( t√

1−v2 −
vz√
1−v2 )

∂t
+
ετζ − εζζv√

1− v2
·
∂( z√

1−v2 −
vt√
1−v2 )

∂t
(63)

∂

∂τ
(
ετ − εζv√

1− v2
) =

εττ − εζτv√
1− v2

· 1√
1− v2

+
ετζ − εζζv√

1− v2
· −v√

1− v2
(64)

=
εττ − εζτv

1− v2
+
−v(ετζ − εζζv)

1− v2
(65)

We conclude that Ett is

Ett =
∂

∂τ
(
ετ − εζv√

1− v2
) =

εττ − εζτv
1− v2

+
−vετζ + εζζv

2

1− v2
=
εττ − 2εζτv + εζζv

2

1− v2
(66)
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We now have only Ezz to derive, which we must begin by finding Ez. We begin by expanding
via the multivariable chain rule as follows:

Ez =
∂ε

∂τ
· ∂τ
∂z

+
∂ε

∂ζ
· ∂ζ
∂z

(67)

We expand the expression to find Ez

Ez = ετ ·
∂( t√

1−v2 −
vz√
1−v2 )

∂z
+ εζ ·

∂( z√
1−v2 −

vt√
1−v2 )

∂z
(68)

Ez = ετ · −
v√

1− v2
+ εζ ·

1√
1− v2

=
εζ − vετ√

1− v2
(69)

Now we simply find the second partial derivative of the Electric Field in respect to z by
expanding with the chain rule

Ezz =
∂

∂z
(
εζ − vετ√

1− v2
) =

∂(
εζ−vετ√
1−v2 )

∂τ
· ∂τ
∂z

+
∂(

εζ−vετ√
1−v2 )

∂ζ
· ∂ζ
∂z

(70)

We continue simplifying to find Ezz to be

Ezz =
∂

∂z
(
εζ − vετ√

1− v2
) =

∂(
εζ−vετ√
1−v2 )

∂τ
· ∂τ
∂z

+
∂(

εζ−vετ√
1−v2 )

∂ζ
· ∂ζ
∂z

(71)

We expand the time τ and z-axis ζ of the second observer in motion to have

Ezz =
εζτ − vεττ√

1− v2
·
∂( t√

1−v2 −
vz√
1−v2 )

∂z
+
εζζ − vετζ√

1− v2
·
∂( z√

1−v2 −
vt√
1−v2 )

∂z
(72)

Simplifying our partial derivatives, we have

Ezz =
εζτ − vεττ√

1− v2
· − v√

1− v2
+
εζζ − vετζ√

1− v2
· 1√

1− v2
=
−v(εζτ − vεττ )

1− v2
+
εζζ − vετζ

1− v2
(73)

Alas, we find Ezz to be

Ezz =
−vεζτ + v2εττ

1− v2
+
εζζ − vετζ

1− v2
=
−2vεζτ + v2εττ + εζζ

1− v2
(74)

Wrapping up the proof, we find that

Ett − Ezz =
εττ − 2εζτv + εζζv

2

1− v2
− −2vεζτ + v2εττ + εζζ

1− v2
= 0 (75)

We have just proved the Wave Equation does indeed hold invariant under the Lorentz Trans-
formation L. From this transformation alone, rises all major tenets of Special Relativity,
including Time Dilation and Length Contraction.

12



3.6 Applications of LT

To observe the utility of the Lorentz Transformations, we need only revert back from light
units (c = 1) such that v = v

c
. By the Lorentz Transformation we just derived, we have the

Length Contraction as

4x′ = x′2 − x′1 =
z − vt√
1− v2

c2

(76)

Traditionally, we reduce the numerator to some x in the stationary observer’s reference frame
such that the contracted length may be expressed as

4x′ = x

γ
(77)

where γ = 1√
1− v2

c2

. Likewise, we may condense the time dilation formula as

4t′ = t′2 − t′1 =
t− vz

c2√
1− v2

c2

(78)

4t′ = γ4t (79)

Note the nature of the Time Dilation and Length Contraction formulas. We find the γ term
in the numerator for the former and in the denominator in the latter, since one quantity
dilates and the other contracts. Indeed, this makes it quite easy to see that when v << c, γ
becomes 1 and the expressions depress to their simpler, Galilean counterparts.

By simply dividing them, we can obtain the velocity transformation equation under the
Lorentz Transformation. In the instance we seek to describe the velocity of an event in the
reference frame of another observer, we use this new, refined velocity addition formula – as
opposed to the traditional, Newtonian sum of velocities

4x′

4t′
=
z − vt
t− vz

c2

·
1
t
1
t

=
z
t
− vt

t

1− vz
c2t

=
u− v
1− uv

c2

(80)

Indeed, we can verify the constancy of the speed of light c by simply letting u = c as

j =
u− v
1− uv

c2

=
c− v
1− cv

c2

=
c− v
1− v

c

=
c− v
c−v
c

= c (81)

And indeed, we find that the speed of light remains constant, even for the stationary observer.
In this section, we have provided a visual, interactive computational program for demon-

strating the Galilean Transformations, which takes the user’s input for the velocities of both
observers and the coordinates of the event E and constructs a visualization of the space-time
diagram for both observers in respect to the GT. Thereafter, the Galilean Transformations
were tested on the Wave Equation, but failed to maintain its invariance, after which the
Fitzgerald and Lorentz Transformations were tested. Finally, a few brief applications of the
LT were provided, including the equations for Length Contraction, Time Dilation, and proof
of the Constancy of the Speed of Light. We now consider the second major principle of
Relativity that can be derived from Maxwell’s Equations – namely, the effect of Time Di-
lation. We make this derivation explicit using a computational program that demonstrates
the Electromagnetic situation at hand.

13



4 Time Dilation from EM

Special Relativity has a whole host of effects, from Relativistic Mass and Length Contraction
to Time Dilation. Many of these effects seem out of reach for an undergraduate learning
Electrodynamics. And yet, the very trails of Special Relativity arises from a classic Electro-
magnetic Scenarios – a point charge and flat sheet in motion.

After understanding the aforementioned EM Scenario with Gauss’ Law and Ampere’s
Law, we seek to construct a computational program that demonstrates the velocity transfor-
mation and time dilation that occurs within this problem. We then conclude by considering
further consequences of this simple problem.

4.1 Charge and Sheet in Motion

We begin by considering the following scenario:
A Charge Q moves in the +î at a constant velocity v alongside a negatively charged sheet

moving at the same velocity in the same direction.
The question seems trivial: how will the Charge Q move? Will it fall straight into the

charged sheet, due to the positive electrostatic attraction? The answer – counter-intuitively
– is far from a predictable linear path. In fact, the journey to the answer will uncover one of
the effects of Special Relativity itself – Time Dilation. This is no accident – indeed, situations
involving relativity can be expected when encountering even the simplest of Electromagnetic
scenarios.

Understanding the behavior of Q begins with a Free Body Diagram involving all forces
involved. We first consider the magnitude of the Electric Field of an infinite sheet of charge.
To do so, we utilize Gauss’ Law as ∫

E · dA =
qenc
ε0

(82)

We construct a Gaussian Surface which respects the rotational symmetry of the Electric
Field of the Infinite Sheet of Charge. This would be a cylinder, which gives

E · (2A) =
σA

ε0
(83)

E =
σ

2ε0
(84)

Being oppositely charged, the direction of the Electric Field would of course be +ĵ. We
consider now the Electric Force, which is simply

FE = EQ =
Qσ

2ε0
(85)

As FE ∼ E, we have dir(FE) =dir(E). We now consider the Magnetic Field with Ampere’s
Law as ∫

B · dS = J · Ienc (86)
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Once again, we do so in respect to the symmetry of the field, which informs our decision to
choose a rectangle as our Amperian Loop. Two lengths of the rectangle will be perpendicular
to the magnetic field, and thus make no contribution to it, and two lengths will be parallel,
which gives

B · (2h) = J(µ0h) (87)

B =
Jµ0

2
(88)

We have dir(B) = k̂ due to the Right Hand Rule (RHR). We may dissect the infinite sheet of
charges as a set of infinite wires, each with a significant magnetic field contribution. Applying
the RHR, we find the Magnetic Field at Q to be counterclockwise. Recall, however, we have a
negative sheet and the Right Hand Rule applies for positive charges or conventional current.
We thus reverse our direction and conclude dir(B) = k̂.

We consider the magnetic force as FB = Q(v × B), and have dir(FB) = −ĵ by the well-
defined direction of the Cross Product. We further have an initial velocity with dir(v) = î.

Considering the Net Force on the Test Charge Q in conjunction with Newton’s Second
Law provides us the equation for the charge’s path as

~F = Q( ~E + ~v × ~B)

~F = Q
(

σ
2ε0
− ~v × µ0σs

2

)
→ ~F = Q

(
σ
2ε0
− µ0v2σ

2

)
.

(89)

Which we can simplify further to be

F =
Qσ

2ε0

(
1− µ0ε0v

2
)

=
Qσ

2ε0

(
1− v2

c2

)
= QE

(
1− v2

c2

)
(90)

in which we utilized two key computations to simplify the expression for ~r(t) – simplifying
1

(µ0ε0)
2 as c2. We also used the formula derived for the Constant Electric Field of an Infinite

Sheet of Charge as E = σ
2ε0

to simplify the expression.
For a Stationary Observer, there exists both an Electric Field produced by the Charge

Q and a Magnetic Field due to it’s initial movement along the x-axis. For an observer
moving at a velocity v with the Charged Sheet, there only exists an Electric Field F = QE,
produced by the stationary, nonmoving charge. This results in the inner term of the velocity
term going to unity, thus producing a smaller time for the moving observer. This becomes
clear as

t =

√
2mr(t)

QE
(
1− v2

c2

) (91)

for the Stationary Observer. For the moving observer, however, the second term in the
denominator becomes unity, resulting in a smaller perceived time for the charge Q to traverse
the same distance due to a larger velocity v

t′ =

√
2mr(t)

QE
=

√
2mr(t)

QE
(
1− v2

c2

)(

√(
1− v2

c2

)
) = t

√(
1− v2

c2

)
(92)

Indeed, in considering the most typical of Electromagnetic scenarios, we have derived the
Lorentz Gamma Factor γ. What a result!
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4.2 Visualizing Motion of Charge in EM Field

And yet, we can take this idea a degree further by actually visualizing the movement of
the Test Charge Q, using Computational Programming. We begin by simply constructing
a canvas in which we’ll draw the Sheet of Charge and its companion Test Charge, making
sure to declare the version of programming language we use and create a canvas suitable for
our visualization.

GlowScript 3.0 VPython

scene2 = canvas(width=1400, height=500, center=vector(2.5e-8,2.5e-8,0),

background=color.white)↪→

Before proceeding, it’s worth creating a physical representation of the î, ĵ, k̂ directions, in
the form of the x, y, z axes. These will come in play later as we consider the direction of the
different forces on the Test Charge Q.

for i in range (-5,5):

rate(4)

axesX = box(length = .5e-8, width = 0.2*(1e-8), height = .5e-8, pos =

vector(i*(1e-8), 0, 0), color = color.green, opacity = 0.2)↪→

axesY = box(length = 0.2*(1e-8), width = .5e-8, height = .5e-8, pos =

vector(0, i*(1e-8), 0), color = color.magenta, opacity = 0.2)↪→

axesZ = box(length = .5e-8, width = .5e-8, height = 0.2*(1e-8), pos =

vector(0, 0, i*(1e-8)), color = color.cyan, opacity = 0.2)↪→

Note the atomic scale of both the canvas and the axes – this is simply to make the scale
realistic. In the interest of saving time in the future, we declare all useful constants, including
a Scale Factor which will be occasionally used. As this is a 3D environment, it’s worth setting
up effective lighting for the scene, in the form of a ’lamp’ and a sphere embodying the lamp’s
luminous intensity as

lamp = local_light(pos=vector(3e-8,3e-8,-2.5e-8), color=color.yellow)

sphere(pos = vector(3e-8,3e-8,-2.5e-8), emissive = True,

radius = 1e-9, color = color.yellow)

First and foremost, we consider the Infinite Sheet of Negative Charge. For the sake of our
purposes and in the interest of saving rendering time, we will utilize a visibly finite sheet for
the time being – keeping in mind, however, that the sheet is ideally infinite. We utilize a
nested for loop as

for i in range (1,5):

for j in range (1,5):

for k in range (1,5):

rate (50)

sources.append(sphere (pos = vector(i*(1e-8),j*(1e-8),0),

radius = 1e-9, color = color.red, q = -Q))↪→
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r_obs.append(vector(i*(1e-8),j*(1e-8),k*(1e-8)))

r_obs2.append(vector(i*(1e-8),j*(1e-8),-k*(1e-8)))

The for loop uses two of its three variables to construct a two-dimensional, flat sheet of
infinite charge. To indicate the value of the charge, we’ve defined an attribute q, such that
any charge in sources[] has sources[i].q=-Q, indicative of a negative charge. The loop
creates a charge and appends it to the array sources[]. We also have observation points
being appended to r_obs and r_obs2. The loop appends an observation point to either one
of these two sets – the two sets represent the front and back, respectively, of the sheet of
charge.

We now take every single charge in sources[] and consider them as one flat sheet of
negative charge by combining them via the compound function. To do so, we loop through
the elements of sources[] and append each one to a new placeholder array, aptly titled by
the same name, which will then be compounded into a single sheet of charge.

for i in range(0,len(sources)):

placeHolder.append(sources[i])

charges = compound(placeHolder)

We now consider the test charge, which can be easily created using the sphere() function.
We give it a radius suitable for a Proton, although in reality the Proton has a radius to the
order of 10−15, a number contested due to the proton-size puzzle [31], which is in regards to
a minor discrepancy in the size of the Proton. We also assign a trail to the Test Charge in
the interest of following its trajectory.
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testCharge = sphere(pos = vector(2.5e-8,-2.5e-8,-2e-8), radius = 1e-9,

make_trail = True, trail_radius = .3*1e-9, trail_color = color.purple,

emissive = True)

↪→

↪→

We proceed to generating the actual electric field of the Sheet of Charge via Couloumb’s
Law as

for i in range (0, len(sources)):

rate(20)

print("sources.pos = " + sources[i].pos)

E.append(vector(0,0,0))

E2.append(vector(0,0,0))

print("r_obs[i] is "+r_obs[i])

print("sources[i].pos is "+sources[i].pos)

print("Their difference r_obs[i]-sources[i].pos is "+r_obs[i])

r.append(r_obs[i]-sources[i].pos)

r2.append(r_obs2[i]-sources[i].pos)

E[i] = E[i] + ((k * Q)/(mag(r[i])**2)) * (-norm(r[i]))

E2[i] = E2[i] + ((k * Q)/(mag(r2[i])**2)) * (-norm(r2[i]))

FieldVectors.append(arrow (pos = r_obs[i], color =

vec(i/100,i/50,i/10), axis = ScaleFactor*E[i], shaftwidth =

sources[i].radius, opacity = mag(r[i])))

↪→

↪→

FieldVectors2.append(arrow (pos = r_obs2[i], color =

vec(i/100,i/50,i/10), axis = ScaleFactor*E2[i], shaftwidth =

sources[i].radius, opacity = mag(r[i])))

↪→

↪→

print("FieldVectors.pos = " + FieldVectors[i].pos)

We thus conclude ∃E1, E2, one on either side of the flat sheet of charge. We begin by
initializing the Electric Field on both sides to be vector(0,0,0). We then consider our
radius r to be the difference between our observation point and the actual source charge in
the sheet, and append those radii to their respective sets. The magnitude of the electric field
vectors are then computed via Coulomb’s Law, and their magnitude is taken by performing
the norm() function on the radii. Occasional breakpoints such as the one below may be
useful in diagnosing errors in the magnitude of the Electric Field, should they arise.

print("Why is E[i] = NaN?) r[i] = " + r[i])

Once again, we seek to combine all the Electric Field vectors on either side of the Sheet of
Charge using the compound() function as needed
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for i in range(0,len(FieldVectors)):

FieldVectorsPlaceHolder.append(FieldVectors[i])

SecondFieldVectorsPlaceHolder.append(FieldVectors2[i])

movingVectors = compound(FieldVectorsPlaceHolder)

secondMovingVectors = compound(SecondFieldVectorsPlaceHolder)

The utility in combining these elements will become evident as we seek to increment their
positions. For the time being, however, it is far easier to manipulate the elements as a
homogeneous group of vectors rather than isolated parts.

We now consider the forces acting on our test charge Q. First and foremost, we consider
the electric field at the test charge. To do so, we compute the Electric Field due to every
single component of the sheet of charge at Q, and use a loop to append all the vectors to
their respective arrays as

for i in range (0, len(sources)):

rate(20)

E_TestCharge.append(testCharge.pos)

r_TestCharge.append(testCharge.pos-sources[i].pos)

E_TestCharge[i] = E_TestCharge[i] + ((k *

Q)/(mag(r_TestCharge[i])**2)) * (-norm(r_TestCharge[i]))↪→
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FieldVectors_TestCharge.append(arrow (pos = testCharge.pos, color =

color.green, axis = 50*ScaleFactor*E_TestCharge[i], headwidth =

sources[i].radius, shaftwidth = ((sources[i].radius)/2), opacity =

0.15))

↪→

↪→

↪→

Whenever we have such disparate parts as the vectors of an electric field, it’s useful to
combine them as a compound. To do so, we once again employ the compound() function to
group these vectors together, thus making their manipulation trivial.

allEFVectors = []

for i in range(0,len(FieldVectors_TestCharge)):

allEFVectors.append(FieldVectors_TestCharge[i])

print("Positional Difference:" +

(FieldVectors_TestCharge[i].pos-testCharge.pos))↪→

greenElectricField = compound(allEFVectors)

Due to the microscopic scale at which the program runs, Glowscript makes rendering errors
time to time. As such, minor corrections to the position of various elements may need to be
applied – thus the need for positional checks such as the one above. We now consider the Net

Electric Field Vector at test charge Q. We could have simply pursued the traditional route
and applied the FE = EQ = Qσ

2ε0
for a sheet of flat charge, but the lackluster result would

not have the same intuitive or visual impact as combining all the Electric Field Vectors at a
point. Furthermore, it can be used for instructional purposes to demonstrate the Magnitude
of the Electric Field for a flat sheet of charge remains constant by distance. With that
motivation in mind, we now seek to find the net electric field at the test charge. To do so,
we begin by summing the magnitudes and directions of the vectors separately.
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for i in range (0,len(FieldVectors_TestCharge)-1):

sumVectors = sumVectors + mag(FieldVectors_TestCharge[i].axis)

dirVectors_x = dirVectors_x + FieldVectors_TestCharge[i].axis.x

dirVectors_y = dirVectors_y + FieldVectors_TestCharge[i].axis.y

dirVectors_z = dirVectors_z + FieldVectors_TestCharge[i].axis.z

With our net direction in each direction ready, we declare the direction of the net electric
field vector to be

dirVectors = vector(dirVectors_x, dirVectors_y, dirVectors_z)

We proceed to adding the remaining vectors at Q, including the Electric Field, Magnetic
Field, Electric Force, Magnetic Force, and velocity. The vectors are scaled accordingly to
make them visible on the canvas.

netElectricFieldVector = arrow(pos = testCharge.pos, color = color.red,

axis = 10000*ScaleFactor*(sumVectors)*norm(dirVectors), shaftwidth =

sources[1].radius, opacity = 0.5)

↪→

↪→

netMagneticFieldVector = arrow(pos = testCharge.pos, color = color.cyan,

axis = 1e23*ScaleFactor*(J*permeability_magnetic/2)*vector(0,0,1),

shaftwidth = sources[1].radius, opacity = 0.6)

↪→

↪→

velocityVector = arrow(pos = testCharge.pos, color = color.orange, axis =

vector(1e-8,0,0))↪→

ElectricForce = arrow(pos = testCharge.pos, color = color.magenta, axis =

.5*1e19*mag(netElectricFieldVector.axis)*(1.6e-19)*norm(EF.axis))↪→

MagneticForce = arrow (pos = testCharge.pos, color = color.black, axis =

-.6*10e26*Q*cross(netMagneticFieldVector.axis, velocityVector.axis))↪→

Breakpoints such as the one below are occasionally scattered throughout the program to
indicate the magnitude and direction of the above vectors.

print("The net electric field at Q is " + mag(netElectricFieldVector.axis)

+ "And the direction is " + norm(netElectricFieldVector.axis))↪→

We now initialize various graphs that indicate the direction of motion, and the change in
Electric Force (if any), among other computations. To construct a graph, we use the graph()
function for all seven of our charts. For instance, creating the Magnitude of the Electric Field
Vector by Distance would be

g1 = graph(title='Electric Field Vectors', scroll=False, fast=True, xmin =

19e-9, xmax = 20e-9, xtitle='Magnitude of Electric Field Vector',

ytitle='Time')

↪→

↪→

f1 = gdots(graph=g1, color=color.red)
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And likewise, we repeat for all seven graphs. We now increment the actual movement of the
test Charge and the sheet. For elements that will move in a linear path, we will simply utilize
a small time increment to animate said element’s movement. In the case of the test charge,
however, we have an explicitly defined equation ~r(t) that defines its movement. In addition,
we also plot all seven of our graphs in the same for loop that animates the movement of
our test Charge and Infinite Sheet, so that the graphs update in real-time. The excerpt has
been modified for brevity, but the gist is to simply define the positional increment for all
elements in the program, whilst simultaneously plotting the magnitude of different vectors
according to distance, time, or other scalars.

for time in range (1,4):

rate(0.2)

secondMovingVectors.pos += deltaMove

testCharge.pos.x = -1e2*(1e-10)*time

testCharge.pos.y = 1e-22*(Q*E*(time**2))/(2*m)

changeInPos = vector(2.5e-8,-2.5e-8,-2e-8) - testCharge.pos

greenElectricField.opacity -= time

netElectricFieldVector.pos = testCharge.pos

f5.plot(mag(netElectricFieldVector.axis),time)

Finally, we conclude with a means of switching perspectives from the Stationary Observer
to a Moving Observer (i.e., from solely an Electric Field to an Electric and Magnetic Field).
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To do so, we utilize the follow attribute of the camera method for our scene. In addition,
we add a Graphical User Interface for the user to switch between these modes and actually
visually witness the charge moving faster as a moving observer rather than a stationary one.
We may do so as follows:

pointer = sphere (radius = 1e-20, pos = vector(0,0,0))

scene2.camera.follow(testCharge)

def TestCharge():

scene2.camera.follow(testCharge)

def Center():

scene2.camera.follow(pointer)

def getDist():

print("Camera Position "+scene.camera.pos)

print("Camera Axis "+scene.camera.axis)

cbutton = button(text='Stationary Observer', pos=scene2.title_anchor,

bind=Center)↪→

And thus, we conclude with an actual, visually intuitive demonstration of the time relativistic
effects of a simple test charge moving alongside an infinite sheet of charge. The pedagogical
oppurtunities of this demonstration are evident – it enables the student to actually witness
the relativistic behavior of time as applied to Electromagnetism, in stark contrast to simply
deriving the Gamma Factor and Time Dilation formula, the traditional approach supplied
by many textbooks.

5 ∂ ~E
∂t from Biot-Savart and STR

The traditional introduction of the Displacement Current term in standard electromagnetics
textbooks is via an inconsistency in Ampere’s Law when applied to Parallel Plate Capacitors
[26] – i.e., an Amperian Loop can be chosen such that a current does not penetrate the
boundary of the surface. This presentation may lead one to believe the Displacement Current
to be an ad-hoc correction to Ampere’s Law, when it is actually a natural consequence of a
moving test charge [27] [28].

To motivate the existence of the displacement current, we chose an alternative route –
not a parallel plate capacitor, but a simple test charge located at the origin.

According to Maxwell himself, the Displacement Current term is ’electrostatically’ anal-
ogous to a normal current element or a moving test charge. We thus examine a test charge
from a stationary and moving observer’s point of view. Whereas a stationary observer only
finds an electric field, an observer moving with velocity −v with respect to the stationary
frame will witness both an electric and magnetic field. Such a test charge would thus ex-
hibit the displacement current, due to the moving electric field. We take the relativistic
form of the electromagnetic fields of the test charge and derive the Biot Savart Law from
it. Hidden implicitly within the Biot Savart Law is the Displacement Current Term, which
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we reformulate using the Partial Derivative of a Cross Product to conclude with Ampere’s
Law, corrected with the Displacement Current Term. Before doing so, however, it is crucial
to understand the Biot-Savart Law as it is traditionally applied to a current-carrying wire.

5.1 Visualization of Biot-Savart

We begin our demonstration of the Biot-Savart Law by initializing a scene frame and drawing
the x, y, z axes as

scene = canvas(background = color.white)

for i in range (-10,10):

rate(10)

axesX = box(length = 0.2, width = 1, height = 1, pos = vector(i, 0,

0), color = color.green, opacity = 0.3)↪→

axesY = box(length = 1, width = 1, height = 0.2, pos = vector(0, i,

0), color = color.magenta, opacity = 0.3)↪→

axesZ = box(length = 1, width = 0.2, height = 1, pos = vector(0, 0,

i), color = color.cyan, opacity = 0.3)↪→

We immediately thereafter establish our current-carrying wire chargedRod and declare our
drag state to be False. We create the wire using the cylinder() function in Glowscript

and initialize the drag state to false so that the student may be able to drag the position
of the magnetic field vector in real-time.

chargedRod = cylinder (pos = vector(0,-5,0), axis = vector (0,10,0),

radius = 1, opacity = 0.3, color = color.red)

drag = False
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All relevant electromagnetic constants including µ0, I, and R are initialized. R depends on
the distance of the position of the cursor from the origin.

mu_not = 4*pi*10e-7

R = scene.mouse.pos.y

biotSavart = (mu_not * I)/(2*pi*R)

We seek to create the magnetic field vector at any distance R from the current-carrying wire.
To do so, we require both Magnitude and Direction. The magnitude will be supplied by the
Biot-Savart Law as

‖ ~B‖ =
mu0I

2πR
(93)

he Right Hand Rule gives the direction of the magnetic field to be counterclockwise, since
the current has dir(I) = ĵ. The unexpected challenge, however, is to compute a consistently

counterclockwise magnetic field ~B vector around the wire. To do so, we construct three
auxiliary vectors: a vector ~u from the origin to the y axis, a vector ~p from the origin to
the cursor position, and a vector ~v as the difference between the two vectors. From that
difference, a dot product ~v · ~w is calculated such that the result is 0, and thus we have that
~w is indeed the magnetic field vector at the cursor’s position. Prior to constructing this in

code, we must declare three functions – each corresponding to three of the user’s actions:
impressing the track-pad, dragging, and releasing. We thus define our down() function to be

def down():

drag = True

origin = vector(0,0,0)

originToMouse = arrow (pos = origin, axis = scene.mouse.pos-origin)

originToZ = arrow (pos = origin, axis = vector(0,scene.mouse.pos.y,0))

diffVec = arrow (pos = originToZ.axis, axis =

originToMouse.axis-originToZ.axis, color = color.green)↪→
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fieldVector = arrow (pos = scene.mouse.pos, axis =

scaleFactor*biotSavart*norm(vector(-scene.mouse.pos.z,0,

scene.mouse.pos.x)))

↪→

↪→

circleShow = ring(radius=sqrt((scene.mouse.pos.x)**2+

(scene.mouse.pos.z)**2), thickness = 0.25, pos =

vector(0,scene.mouse.pos.y,0), axis = vector(0,1,0))

↪→

↪→

In the next auxiliary function move(), the program updates the magnitude and direction
of all four vectors based on the position of the cursor. We must also declare a few global
variables so they may be used outside the move() function. For instance, we may have

def move():

global drag, fieldVector, originToMouse, originToZ, diffVec,

circleShow↪→

if drag:

originToMouse.axis = scene.mouse.pos - vector(0,0,0)

circleShow.pos = vector(0,scene.mouse.pos.y,0)

Finally, we have the release function up(), which generates a graph of the magnitude of the
magnetic field by distance and updates real-time, based on the user’s placement of Magnetic
Field vectors. We may verify the graph and indeed find that the magnetic field drops
proportional to the distance R. Lastly, we bind the scene to all three auxiliary functions,
leaving us with

def up():

global drag, fieldVector, originToMouse, diffVec

fieldVector.color = color.red

fieldGraph = gdots(color=color.cyan, radius = 6, color = color.red)

fieldGraph.plot(mag(diffVec.axis),mag(fieldVector.axis))

drag = False

scene.bind("mousedown", down)

5.2 Time Dilation from EM

We now pivot from the Biot-Savart Law to a moving test charge. In doing so, we will find that
the Law we have just visually demonstrated implicitly contains within it the Displacement
Current, without the need for any capacitors. Consider once again our test chargeQ, centered
at the origin and moving in the î direction. As Maxwell himself states the Displacement
Current to be ”electrostatically” equivalent to a traditional current formed by a moving
Electric Field, it makes sense to find the change in the Electric Field of the charge in respect
to time. To do so, we employ the multivariable chain rule as

∂E

∂t
=
∂E

∂x
· ∂x
∂t

(94)

∂E

∂t
= (−v) · ∂

∂x
(

1

4πε0

Q

r2
) (95)
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Here’s where relativity comes in. Through the Electromagnetic Field Strength Tensor, we
find the equations of a relativistic electric field to be

E‖ = E ′‖ (96)

B‖ = 0 (97)

E⊥ = γE ′⊥ (98)

B = +γ
1

c2
v × E ′ (99)

In which

γ =
1√

1− c2

v2

(100)

We thus have the Magnetic Field at any given distance R to be

B(r) = γ
1

c2
v × E = γµ0

qv × r̂
4πr2

(101)

There it is! The Displacement Current implicit within the Biot-Savart Law. By the partial
derivative of a cross product, we have

B(r) = γ
1

c2
(~v × ~E) (102)

B(r) = γµ0ε0(~v × ~E) (103)

∂

∂t
(~r × ~E) =

∂

∂t
(~r)× ~E + ~r × ∂

∂t
( ~E) (104)

∂

∂t
(~r × ~E) = −~v × ~E + ~r × ∂

∂t
( ~E) (105)

0 = −~v × ~E + ~r × ∂

∂t
( ~E) (106)

~r × ∂

∂t
( ~E) = ~v × ~E (107)

B(r) = γµ0r × (ε0
∂E

∂t
) (108)

And thus we conclude with none other than Ampere’s Law, which includes Maxwell’s addi-
tion of the Displacement Current:

∂B

∂t
= γµ0v × (ε0

∂E

∂t
) (109)

And therein lies the power of the Biot Savart Law – it implicitly contains the Displacement
Current [19], without which the oscillation of the Electromagnetic Wave would remain a
mystery.
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6 Conclusion

Various extensions may be applied to the above computational programs to further increase
their utility in demonstrating the bridge between Maxwell’s Equations and Einstein’s Theory
of Special Relativity. For instance, for the Galilean Transformations visualization, drag

states can be defined in the program to enable the student to change the velocities of the
observers and position of the event E in real-time without having to re-run the program. The
visualization for Time Dilation from an EM problem may be modified such that the student
can define the charge’s position and initial horizontal velocity. Furthermore, an analogous
computational program may be created to demonstrate the radiation from a charge at rest
in a gravitational field [25]. The final computational visualization on the Biot-Savart Law
may be modified to enable the user to adjust various electromagnetic parameters, such as
the current running through the wire.

Through the last three sections, we have demonstrated how computational programming
visualizations can work symbiotically with theoretical derivations to solidify the concepts
behind the bridge between EM and STR and make them tangible – indeed, computational
visualizations such as the ones above offer rich pedagogical oppurtunities for teachers and
students alike to intuitively grasp the ideas of Maxwell’s Equations and Einstein’s Special
Relativity.
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