ORDERS OF MAGNITUDE

QUESTION OF THE DAY

What is Order of Magnitude? How it is relate to the statement below: $\log (?)=$?

Do Now (Via Peer Scaffolding)

Q1
 $$
\begin{aligned} & 10^{\cdot 5} \approx 3.16228 \\ & 10^{1.5} \approx \end{aligned}
$$

Q2
$\log (3.16228)=.5$
$\log (31.62277)=$ $\log ($? $)=$?

Q3. What did you discover?

Do Now (Via Peer Scaffolding)

Q4 Number	Log	Power of 10	Order of Magnitude
30	$\log (30)=1.477$	$30=10^{1.477}$	1
31.7			
40			

Q5 What did you discover? (What question led you to the discovery?

Find the orders of Magnitude of following

Q6

1. 2000
2. 9000
3. . 0002
4. . 0009

Q7
Why are orders of magnitude useful?

BIG IDEA (Individually)

Value	SN	OM	Name	Log (b)	Log is an exponent
300000000					
5980000000000 000000000000					
7350000000000 0000000000					
0.000000000000 0000000000000 00000000663					
0.000000000000 0000000000000 0167					

