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1 Finding λ and f

1. Microwave oven operating at a wavelength of 12.2 cm.

Since the speed of light is constant and v = fλ, we have

f =
3 ∗ 108 m

s

12.2 cm ∗ 10−2 m
cm

= 2.459 ∗ 109 Hz

2. The 9.19263177 ∗ 109 Hz transition in cesium atom.

λ =
3 ∗ 108 m

s

9.19263177 ∗ 109 Hz
= 0.0326349455 m

3. The peak of the radiation emitted by the human body near 10µm

λ =
3 ∗ 108 m

s

10µm ∗ 10−6 m
µm

= 3 ∗ 1013 Hz

4. Optical communication wavelength of 1.55 µm.

f =
3 ∗ 108 m

s

1.55µm ∗ 10−6 m
µm

= 1.93548387 ∗ 1014 Hz

5. National Public Radio broadcasting at 93.9 MHz.

λ =
3 ∗ 108 m

s

93.9 MHz ∗ 106 Hz
MHz

= 3.1948 m

6. A.M. radio operating at 880 kHz.

λ =
3 ∗ 108 m

s

880 KHz ∗ 103 Hz
KHz

= 340.9090 m

7. Video Carrier frequency of 503.25 MHz for TV.

λ =
3 ∗ 108 m

s

503.25 MHz ∗ 106 Hz
MHz

= 0.5961 m

8. X-rays of frequency 7 ∗ 1018 Hz used in medical imaging.

λ =
3 ∗ 108 m

s

7 ∗ 1018 Hz
= 4.28 ∗ 10−11 m

9. A gamma ray of wavelength 55 fm.

f =
3 ∗ 108 m

s

55 fm ∗ 10−15 m
fm

= 5.4545 ∗ 1021 Hz

1



10. He-Ne laser light of wavelength 632.8 nm used in barcode scanning.

f =
3 ∗ 108 m

s

632.8 nm ∗ 10−9 m
nm

= 1 ∗ 109 Hz

11. Terahertz radiation (T-ray) of frequency 2.5 THz.

λ =
3 ∗ 108 m

s

2.5 ∗ 1012 Hz
= 1.2 ∗ 10−4 m

12. The CMB radiation of wavelength 7.35 cm

f =
3 ∗ 108 m

s

7.35cm ∗ 10−2 m
cm

= 4.08 ∗ 109 Hz

2 Equivalent Solutions to Wave Equation

1. ψ(x, t) = A sin k(x± vt)

The wave equation, ∂2u
∂t2 = c2 ∂2x

∂x2 , has solutions of the form u = u(x± vt). This equation,
with the k distributed throughout, becomes ψ(x, t) = A sin(kx± kvt).

2. ψ(x, t) = A sin(kx± ωt)

We recall that ω
k = v, a fact that is clear both from dimensional analysis and derivation:

1
s
1
m

=
m

s
or

2πf
2π
λ

= fλ = v

Factoring k from the phase argument, we thus have

ψ(x, t) = A sin k(x± ω

k
t) → ψ(x, t) = A sin k(x± vt)

3. ψ(x, t) = A sin 2π{(x/λ)± (t/T )}
Recall how ω, k relate to T, λ:

ω = 2πf =
2π

T
→ T =

2π

ω
and k =

2π

λ
→ λ =

2π

k

Substituting the relevant terms, we have

ψ(x, t) = A sin 2π{(x/(2π
k
))± (t/(

2π

ω
))}

ψ(x, t) = A sin 2π{kx
2π

± ωt

2π
} → ψ(x, t) = A sin(kx± ωt)

This was shown to be equivalent to ψ(x, t) = A sin k(x± vt) in the previous problem.

4. ψ(x, t) = A sin 2πf{(x/v)± t}
We recognize that 2πf = ω, which gives

ψ(x, t) = A sinω{(x/v)± t} = A sinω{ x(
ω
k

) ± t} = A sinω{kx
ω

± t}

ψ(x, t) = A sin(kx± ωt)
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3 Traveling Wave

A traveling wave is one which may be expressed as e−a(x±vt)2 . Why? e−x21 looks like a wave, but
to make it move, we replace x with x± vt. We now recognize that the exponential may be factored
as

5e(−ax2−bt2−2(ab)
1
2 xt) = 5e−(ax2+2

√
abxt+bt2) = 5e−(x

√
a+t

√
b)2 = 5e−(

√
a(x+

√
b
a t))2 = 5e−a(x+

√
b
a t)2

We recognize that the velocity is simply the coefficient of the t term, which is v =
√

b
a . In this case,

a = 25m−1, b = 9s−1. We thus have a traveling wave with velocity
√

25
9 =

5

3

m

s
in the negative

direction (owing to the positive vt term). Below is a sketch of the wave at t = 0. A few computed
valuees of f(x, t) are as follows: f(0, 0) = 5, f(0, 0.5) = 0.526, f(0.1, 0.6) = 0.0252.

Figure 1: Wave f(x, t) = f(x, 0)

4 Time-Averaged Values of sin2(x) and cos2(x)

1. Prove ⟨sin2(k⃗ · r⃗ − ωt)⟩ = 1
2

Per the definition of the time-averaged function f(t), we have

1

T

∫ t+T

t

sin2
(
k⃗ · r⃗ − ωt′

)
dt′

We now make a u-substitution

u = (kxx+ kyy + kzz)− wt′ → 1

T

∫ t+T

t

sin2(u)
du

−w

Leveraging the cosine double angle formula, we now have

− 1

wT

[
1

2

(
K⃗ · r⃗ − wt′

)
− 1

4
sin
(
2
(
k⃗ + r̄ − wt′

))]t′=t+T

t′=t

1Coincidentally, it is also the normal distribution.
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If we now let p = 2(k⃗ · r⃗ − 2ωt), we have

1

2
− 1

2ωT

{[
−1

2
sin(p− 2ωT ) +

1

2
sin(p)

]}
Expanding via the sine of a difference, everything inside the brackets becomes 0 to give

1

2
− 1

4ωT
{[− sin(p) cos(2ωT )− sin(2ωT ) cos(p) + sin(p)]} =

1

2

2. Prove ⟨cos2(k⃗ · r⃗ − ωt)⟩ = 1
2

Recall that by definition, a time-averaged function f(t) has

⟨f(t)⟩ = 1

T

∫ t+T

t

f(t′)dt′

For f(t) = cos2(·), we have

1

T

∫ t+T

t

cos2(k⃗ · r⃗ − ωt′)dt′

We proceed to make the u-substitution

u = k⃗ · r⃗ − ωt→ du

dt
= −ω → −du

w
= dt

This produces the integral

− 1

ωT

∫
cos2(u)du

Leveraging the trigonometric formula for cosine that cos2(u) = cos2(u)− sin2(u), which
may be rewritten using sin2 u = 1− cos2 u. We thus have the integral

− 1

2ωT

∫
cos(2u) + 1du = − 1

2ωT
[
sin(2u))

2
+ u]

Expanding by substituing the limits of integration, we have

− 1

ωT
[
k⃗ · r⃗ − ωt− ωT

2
+
sin(2(k⃗ · r⃗)− 2ωt− 2wT )

4
−(

k⃗ · r⃗ − ωt− ωT

2
)−(

sin(2(k⃗ · r⃗)− 2ωT )

4
)]

Simplifying by letting p = 2(k⃗ · r⃗)− 2ωt, we have

1

2
− 1

ωT
[
sin(p− 2ωT )− sin(p)

4
] =

1

2
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3. Prove ⟨sin(k⃗ · r⃗ − ωt) cos(k⃗ · r⃗ − ωt)⟩ = 0

We exploit the trigonometric identity

sin(2x) = 2 sin(x) cos(x)

This enables us to rewrite our time-averaged value as

⟨sin(k⃗ · r⃗ − ωt) cos(k⃗ · r⃗ − ωt)⟩ = 1

2T

∫ t+T

t

sin(2(k⃗ · r⃗ − ωt′))dt′

We now use u-substitution as

u = 2(k⃗ · r⃗)− 2wt′ → − du

2w
= dt′

Notwithstanding the limits of integration, we may now re-write the integral as

− 1

4ωT

∫
sin(u)du =

1

4ωT
cos(u) =

1

4ωT
cos(2(k⃗ · r⃗)− 2wt′)

∣∣∣∣∣
t′=t+T

t′=t

Substituting the limits of integration gives

1

4ωT
[cos(2(k⃗ · r⃗)− 2wt− 2wT )− cos(2(k⃗ · r⃗)− 2wt)]

Let p = 2(k⃗ · r⃗)− 2wt, as this term is repeated:

1

4ωT
[cos(p− 2ωT )− cos(p)]

Expanding the cosine of a difference, we have

1

4ωT
[cos(p) cos(2ωT ) + sin(p) sin(2ωT )− cos(p)]

As T = nτ , where τ is the period, we have sin(2ωT ) = 0 and cos(2ωT ) = 1, which gives

1

4ωT
[cos(p)− cos(p)] = 0

5 Properties of an Electromagnetic Wave

1. Find direction of propagation.

We begin with the wave given by

E⃗(r⃗, t) = [2̂i− 3ĵ + 2k̂](104) cos(5 ∗ 107(x+ 2 + 2z

3
)− (15π) ∗ 1015t)
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We can now read off k⃗ from the phase argument as

kx =
1

3
5 ∗ 107, ky =

2

3
5 ∗ 107, kz =

2

3
5 ∗ 107

The magnitude of k⃗ is thus

∥k⃗∥ =
√
k2x + k2y + k2z =

π

2
∗ 108m−1

The direction of propagation may be found by taking the unit vector ŝ as

ŝ =
k

∥k∥
=

1

3
î+

2

3
ĵ +

2

3
k̂

2. Find the velocity.

Recall that the velocity of a wave is given by

v =
ω

k
=

15π ∗ 1015

(π2 ∗ 108)
= 3 ∗ 108m/s

3. Find the wavelength

λ =
2π

k
=

2π
π
2 ∗ 108

= 4 ∗ 10−8m

4. Find B⃗(r⃗, t)

k × E = ωB → B =
k × E

ω
=

∥k∥ŝ× E⃗

ω

We now substitute ŝ from part one, E as given, and ω from the time term.

π
2 ∗ 108

15π ∗ 1015

∣∣∣∣∣∣
î ĵ k̂
1
3

2
3

1
3

2 −3 2

∣∣∣∣∣∣ (104) cos
(
5 ∗ 107

(
x+ 2y + 2z

3

)
− (15π ∗ 1015)t

)

B⃗(r⃗, t) =

[
7

9
î− 7

9
k̂

]
(10−4) cos

(
5 ∗ 107

(
x+ 2y + 2z

3

)
− (15π ∗ 1015)t

)
5. Find the intensity.

We simply have to plug in our electric field’s maximum amplitude into the following:

Savg =
1

2µ0
EB =

1

2
(4π∗10−7)

(√
104((2)2 + (−3)2 + (2)2)

)2
√√√√10−4

((
7

9

)2

+

(
−7

9

)2
)2

This gives I = Savg = 1.29 ∗ 10−5 W

m2
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6. Describe the polarization state of the wave.

The wave is linearly polarized because E0 is constant and time-invariant. The direction
of polarization is given by the unit vector

ê =
E⃗0

∥E⃗0∥
=

[2̂i− 3ĵ + 2k̂]√
13

=
2√
13
î− 3√

13
ĵ +

2√
13
k̂

7. Find the radiation pressure for a perfectly absorbing surface.

For a perfectly absorbing surface, simply substitute values into

ρ =
I

c
=

1.29 ∗ 10−5

3 ∗ 108
= 0.43 ∗ 10−13 N

m2

6 Radar System

A surveillance radar system operating at 12 GHz at 180 kW of power, attempts to detect an
incoming stealth aircraft at 90 km. Assume the radar beam is emitted uniformly over a hemisphere.

1. What is the intensity of the beam when it reaches the aircraft’s location?

We know that intensity obeys an inverse square law, so that it is initially simply the

power, but at a distance of 90 km, it becomes I = P
4πr2 = 180000

4π(90000)2 = 1.76 ∗ 10−6 W

m2

2. What is the power of the reflected beam if the aircraft reflects the beam with a cross sectional
area of 0.22 m2.

Recall that the power is given by I = P
A → P = IA. We simply take the intensity from

the previous part and multiply by the cross-sectional area of the aircraft:

P =

(
1.76 ∗ 10−6 W

m2

)
(0.22m2) = 3.872 ∗ 10−5W

3. Back at the radar site, what is the intensity?

Consider now that the airplane is the source and the radar system is the receiver. We
thus simply begin with the power found in the second part and drop that power as an inverse

square law. We thus have I ′ = P ′

4πr2 = 3.872∗10−5

4π(90000)2 = 3.8 ∗ 10−16 W

m2

4. Determine the maximum value of the electric field vector.

Recall that the intensity of radiation is related to the electric field’s amplitude by

I =
1

cµ0
E2

rms =
1

cµ0

(
E0√
2

)2

E0 =
√

2Icµ0

E0 =
√
2(3.8 ∗ 10−16)(3 ∗ 108)(4π ∗ 10−7) = 5.35 ∗ 10−7V

m
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5. Find the rms value of the magnetic field of the reflected radar beam.

Recall that the magnetic field is related to the intensity of the radiation by

I =
E0B0

2µ0
→ B0 =

2µ0I

E0
=

2(4π ∗ 10−7)(3.8 ∗ 10−16)

5.35 ∗ 10−7
= 1.78 ∗ 10−15 T

Brms =
B0√
2
=

1.78 ∗ 10−15

√
2

= 1.26 ∗ 10−15 T

7 Proof of k⃗ · B⃗ = 0 & (v/k)(k⃗ × B⃗) = −E⃗

1. Prove that k⃗ · B⃗ = 0

We begin with the differential form of Maxwell’s second equation

∇ · B⃗ = 0

Note that we may express the magnetic field in the form

B⃗ = B⃗0e
i(k⃗·r⃗−ωt) = (Bx0

î+By0
î+Bz0 k̂)e

i(kxx+kyy+kzz−ωt)

We now apply the divergence operator to B⃗ to find

∂Bx

∂x
=

∂

∂x
(Bx0

eip)

Where p = k⃗ · r⃗ − ωt. We thus have

∂Bx

∂x
=
∂Bx

∂p

∂p

∂x
= ikxBx0

eip = ikxBx

Likewise for the other partial derivatives, we have

∂By

∂y
= ikyBy,

∂Bz

∂z
= ikzBz

We thus have the divergence to be

∇ · B⃗ = ikxBx + ikyBy + ikzBz = i(k⃗ · B⃗) = 0 → k⃗ · B⃗ = 0

2. Prove that (v/k)(k⃗ × B⃗) = −E⃗

We begin by considering the cross product ∇× B⃗.∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Bx By Bz

∣∣∣∣∣∣ = î

(
∂

∂y
Bx − ∂

∂x
By

)
+ ĵ

(
∂

∂x
Bz −

∂

∂z
Bx

)
+ k̂

(
∂

∂x
By −

∂

∂y
Bx

)
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We now expand the partial derivative terms by considering the magnetic field as

B⃗ = B⃗0e
i(kxx+kyy+kzz)−iωt

B⃗z = B0ze
i(kxx+kyy+kzz)−iωt

∂Bz

∂y
= ikyB0ze

i(kxx+kyy+kzz)−iωt = ikyB0ze
ip = ikyBz

∂By

∂z
= ikzB0ye

i(kxx+kyy+kzz)−iωt = ikzB0ye
ip = ikzBy

The first term of our cross product is then

î

(
∂

∂y
Bx − ∂

∂x
By

)
= î(ikyBz − ikzBy)

In a similar manner, we may expand the other other two terms to produce

ĵ

(
∂

∂x
Bz −

∂

∂z
Bx

)
= ĵ(ikzBx − ikxBz)

k̂

(
∂

∂x
Bz −

∂

∂z
Bx

)
= k̂(ikxBy − ikyBx)

We may combine all these terms to obtain

∇× B⃗ = i[̂i(ikyBz − ikzBy) + ĵ(kzBx − kxBz) + k̂(kxBy − kyBx)]

The trained eye will recognize this as none other than the cross product i(k⃗ × B⃗). We

now recall that ∇× B⃗ = 1
c2

∂E
∂t , which is simply Ampere’s law in free space.

E⃗ = E⃗0e
(kxx+kyy+kzz)−iωt → 1

c2
∂E

∂t
=

1

c2
− iωE⃗ → c2

ω
(k⃗ × B⃗) = −E⃗

Simplifying this expression leads us to the desired result.

ω

k2
(k⃗ × B⃗) =

v

k
(k⃗ × B⃗) = −E⃗

8 Creating an Electromagnetic Wave

A plane electromagnetic wave, of wavelength 3.0 m, travels in vacuum in the +x direction. The
electric field, of amplitude 300 V/m, oscillates parallel to the y axis.

1. Determine the Electric Field E⃗(r⃗, t)

Three properties are required to determine E⃗(r⃗, t): we need the amplitude of the wave

E⃗0, its wavenumber k⃗ and its angular frequency ω. We thus have

∥E⃗0∥ = 300
V

m
, k̂ = î, ∥k⃗∥ =

2π

λ
=

2π

3
m−1
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ω = 2πf → f =
v

λ
=

3 ∗ 108

3
= 108 → ω = 2π ∗ 108s−1

We now simply substitute all the above values to produce

E⃗(r⃗, t) = (3ĵ) ∗ 102 cos
(
2π

3
x− (2π ∗ 108)t

)

2. Determine the Magnetic Field B⃗(r⃗, t)

Recall that the Magnetic Field may be obtained by crossing the Electric Field E⃗(r⃗, t)

with the direction of propagation k⃗:

k⃗ × E⃗ = ωB → B⃗ =
∥k⃗∥
ω

(ŝ× E⃗) =
1

2π ∗ 108

∣∣∣∣∣∣
î ĵ k̂
1 0 0
0 3 0

∣∣∣∣∣∣ 102 cos
(
2π

3
x− (2π ∗ 108)t

)

B⃗(r⃗, t) =

[
3

2π
k̂

]
∗ (10−6) cos

(
2π

3
x− (2π ∗ 108)t

)
3. What is the shortest distance along the wave between any two points that have a phase

difference of 30◦?

Finding the distance along the wave requires an arc length integral from 0 ≤ t ≤ π
6 .

Recall that the parametric arc length is given by∫ π
6

0

√
(E′

0x
(t))2 + (E′

0y
(t))2dt

As the wave oscillates along the y axis, there is no x component, which results in

∫ π
6

0

−6π ∗ 1010 cos
(
2π

3
x− 3π ∗ 108t

)
dt =

−6π ∗ 1010 sin( 2π3 x− 3π ∗ 108t)
−3π ∗ 108

∣∣∣∣∣
t=π

6

t=0

This results in the following quite awkward – and thus most likely incorrect – expression

2 ∗ 102
(
sin

(
2

3
πx− 18π2 ∗ 108

)
− sin

(
2

3
πx

))

Substituting the simplest x possible, x = 0, and taking the absolute value, we have2:

d = 6.843302723

2Yes, I’m also wondering about the units. Since this is a distance along a curve, I suspect the units would simply
be meters, but I’m not sure.
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4. What is the shortest time interval for a phase difference of 30◦ to occur at a fixed point along
the wave?

We may interpret this to ask: how long would we have to wait as the wave passed by
for a 30◦ phase difference to develop? The answer, of course, depends on the wave’s speed
and period. Recall that T = 1

f , which is the amount of seconds for the wave to complete

one cycle. 30◦ is a sixth ( 30
360 = 1

6 ) of a full cycle, so it stands to reason that it would take

1
6T = 1

6f =
1

6 ∗ 108
s .

5. What phase shift occurs at a given point in 10−6 s, and how many waves have passed by in
that time?

As the period T = 10−8, we expect a 10−6

10−8 ∗2π = 200π = 0◦ phase shift, and 200π
2π = 100

waves to pass by.
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