
Refath Bari 10/6/22

1 Sellmeier & Cauchy Equations

1. Starting with the general form of the dispersion equation according to the electron-oscillator
model of the atom, derive the Sellmeier Equation (where Aj ’s are constants):

n2(λ) = 1 + ΣjAj
λ2

(λ2 − λ2
j )

We begin with the refractive index’s dependence on frequency

n2(ω) = 1 +
Nq2e
ϵ0me

∑
j

fj
ω2
0j − ω2 + ifjω

The damping term approaches 0 for ω0j >> ω. Substituting ω = 2πc
λ , we have

n2(λ) = 1 +
Nq2e
ϵ0me

∑
j

fj(
2πc
λ0j

)2
−
(
2πc
λ

)2
Dividing the numerator and denominator by the common factor, we have

n2(λ) = 1 +
∑
j

Aj ·
1

4π2c2

λ2
0

− 4π2c2

λ2

·
1

4π2c2

1
4π2c2

If we pack all the constants into one term Aj =
Nq2efjλ

2
0j

ϵ0me4π2C2 , we have

n2(λ) = 1 +
∑
j

Aj

λ2
j

λ2 − λ2
0j

2. Show that the Cauchy Equation is an approximation of the Sellmeier Equation:

n(λ) = C1 +
C2

λ2
+

C3

λ4
+ ...

To show that the Sellmeier Equation is equivalent to Cauchy, we have to think several
steps ahead.We’ll try to pack the second term of n2(λ) into a simple taylor expansion, and
then root it to get n(λ), after which we may taylor expand again. We thus begin by getting
the fraction term in the form 1

1−x :

n2(λ) = 1 +A

(
1

1− λ2

λ2

)

Recall the Taylor Expansion

1

1− x
= 1 + x where x =

λ2
0

λ2
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Substituting into n2(λ), we have

n2(λ) = 1 +A

(
1 +

λ2
0

λ2

)
= 1 +A+A

λ2
0

λ2

Cauchy is n(λ), which leads us to recall the taylor expansion for the square root:

f(x) = (1 + x)
1
2 f ′(x) = 1

2 (1 + x)−
1
2 f ′′(x) = − 1

4 (1 + x)−
3
2

f(0) = 1 f ′(0) = 1
2 f ′′(0) = − 1

4

f(x) ≈ f(0)

0!
x0 +

f ′(0)

1!
x′ +

f ′′(0)

2!
x2 = 1 +

1

2
x− 1

8
x2 ± . . .

We may now exploit this Taylor expansion to give

n(λ) =

√
1 +A

(
1 +

λ2
0

λ2

)
, x = A

(
1 +

λ2
0

λ2

)

n(λ) = 1 +
1

2
x = 1 +

1

2

[
A

(
1 +

λ2
0

λ2

)]
We can now see the direct correspondence between the Sellmeier and Cauchy Equation:

n(λ) = 1 +
1

2
A+

1

2
A
λ2
0

λ2
, C1 = 1 +

1

2
A,C2 = A

λ2
0

2

3. Crystal quartz has refractive indices of 1.557 and 1.547 at wavelengths of 410 nm and 550
nm, respectively. Using only the first two terms of the Cauchy’s Equation, calculate C1 and
C2 and find the index of refraction of quartz at 610 nm.

Substituting the known values, we have

n(410 nm) = C1 + C2/(410 nm)2 = 1.557

n(550 mm) = C1 + C2/(550 nm)2 = 1.547

We will now use the Cauchy Equation to create a system of equations from which we
may find C1 and C2.

C1 = 1.5345, C2 = 3783.501

We may now leverage this new information to find the refractive index at 610 nm:

n(610 nm) = 1.5345 + 3783.501/(610 nm)2 → n(610 nm) = 1.544
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2 Absorption Coefficient

1. The absorption coefficient is α(ω) = 2ωκ/c. Show that for a dilute medium and near reso-
nance, the absorption coefficient is

α(ω) =
Ne2

4mε0C

γ

(ω0 − ω)
2
+ (Y/2)2

Let us begin by justifying why the absorption coefficient should be defined as α(ω) =
2ωκ/c in the first place. We begin by defining a complex version of the wavenumber k:

k̃ = k + iκ

Why do we define a complex wavenumber? It turns out that doing so gives

E(z, t) = E0ze
i(k̃z−ωt) = E0ze

i(kz+ikz−ωt) = E0ze
−kxei(kz−ωt)

We can clearly see that there is an attenuation factor of e−kz which exponentially decays
the wave. This should make sense, as we expect the damping term to cause an effect once the
wave enters the dielectric. Indeed, since I ∝ E2 (since I = 1

2ϵ0vE
2), it is reasonable to define

a ≡ 2κ

The goal now is to get κ. We can do so by first establishing a relationship between the
refraction index n and k̃.

n =
c

v
and v =

ω

k
=

2πb
2π
λ

= bλ → n =
ck̃

ω

Recall that the refractive index n may also be written as

n =
c

ν
=

√
ϵ

ϵ0

µ

µ0
=
√

ϵ̃rµ̃r

But µ = µ0 for dielectrics, which gives

n =
√
ϵ̃r → k̃ =

ω

c

√
ϵ̃r

Recall that the complex relative permittivity is given as1

ϵ̃ = 1 +
Nq2e
meϵ0

∑
j

fj
ω2
j − ω2 − iγjω

Recall the taylor expansion
√
1 + x ≈ 1 + 1

2x, where x =
Nq2e
meϵ0

∑
j

fj
ω2

j−ω2−iγjω
:

κ̃ =
ω

c

1 +
Nq2e
2mϵ0

∑
j

fj
ω2
j − ω2 − iyjω


1This will be derived in Problem 4
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But remember the whole motivation behind this calculation was to find the absorption
term, which is linked to the imaginary component of the wavenumber κ̃. With this in mind,
it is useful to remember that

1

a− bi
· a+ bi

a+ bi
=

a+ bi

a2 + b2
=

a

a2 + b2
+ i

b

a2 + b2

We thus multiply the numerator and denominator by the complex conjugate, which gives

k̃ =
ω

c

1 +
Nq2e
2mϵ0

∑
j

fj(
ω2
j − ω2

)
− (iγjω)

·
(
ω2
j − ω2

)
+ (iγjω)(

ω2
j − ω2

)
+ (iγjω)


Simplifying this expression and distributing the complex conjugate gives

k̃ =
ω

c

1 +
Nq2e
2mϵ0

∑
j

fj
(
ω2
j − ω2

)
+ fj(iγjω)(

ω2
j − ω2

)2
+ (γjω)2


Isolating the real and imaginary components, we have

k̃ =
ω

c

1 +
Nq2e
2mϵ0

∑
j

fj
(
ω2
j − ω2

)(
ω2
j − ω2

)2
+ (γjω)

2
+ i
∑
j

fjγjω(
ω2
j − ω2

)2
+ (γjω)
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Figure 1: Plot of Absorption Coefficient

Solely the imaginary component is of interest, as we seek the absorption term

κ =
ω

c

 Nq2e
2mϵ0

∑
j

fjγjω(
ω2
j − ω2

)2
+ (γjω)

2
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As α = 2κ, we have

Ne2ω2

mϵ0c

∑
j

fjγj(
ω2
j − ω2

)2
+ (γjω)

2

3 Light Intensity

1. How far does a 1.55µm beam travel before dropping 10% in intensity?

Using relation between intensity and distance, we have

I(y) = I0e
−αy → .90I0 = I0e

−αy

Solving for y by taking the natural log of both sides, we have

y =
− ln(.9)

α
=

−c ln(.9)

2ωk

We know all variables in this expression, except ω, which we may substitute with

f =
ν

λ
→ f · 2π =

2πν

λ
→ ω = 2π

ν

λ
→ ω =

2πc

nλ

We may now substitute the givens:

y =
−cnλ ln(.9)

4πcκ
=

−(1.5)(1.55µm) ln(.9)

4π (3× 10−8)
→ y = 0.649m

4 Lorentz Oscillator Model

1. How is an atom modeled?

Lorentz’s motivation may have been to model the anomalous dispersion regions of the
n(ω) plot by likening them to the effects of a simple harmonic oscillator when driven at
resonant frequency ω0. A damped oscillator may be expressed as

Fbinding + Fdamping + Frestoring =
∑

F

Substituting for the terms and leveraging ω0 =
√

k
m ⇒ k = ω2

0me, we have

qeE0 cos(ωt)−meγ
dx

dt
− kx = me

d2x

dt2

Though it may seem arbitrary, expressing the position function as a complex x̃ and
expressing E⃗(t) as an exponential will confer calculation benefits when solving for x̃. It is also
worth noting that the electron will likely oscillate at the driving frequency, hence the ω.

x̃(t) = x̃0e
−iωt → dx̃

dt
= −iωx̃0e

−iωt → d2x̃

dt2
= i2ωx̃0e

−iωt

5



Shifting all terms involving x̃ to the left side and dividing by me, we have

qeE0 cos(ωt)− ω2
0mex̃−meγ

dx̃

dt
= me

d2x̃

dt2

ω2
0 x̃+ y

dx̃

dt
+

d2x̃

dt2
=

qe
me

E0 cos (ω0t)︸ ︷︷ ︸
E0e−iωt

We may now substitute the derivatives of x̃:

ω2
0 x̃+ γ

(
−iωx̃0e

−iωt
)
+
(
−ω2x̃0e

−iωt
)
=

qe
me

E0e
−iωt

Noting that dx̃
dt = −iωx̃ and dx̃

dt = −iωx̃ simplifies our expression significantly:

ω2
0 x̃+ γ(−iωx̃) +

(
−ω2x̃

)
=

qe
me

E0e
−iωt

All that remains is to solve for x̃:

χ̃
[
ω2
0 − ω2 − iγω

]
=

qe
me

E0e
−iωt.

χ̃ =
qe/me

ω2
0 − ω2 − iγω

E0e
−iωt

2. How do the natural frequencies relate to the dispersion curve for a material?

What we just derived is the position function of an electron in a dielectric when driven
by an oscillating electric field. However, we may relate this to the refractive index by linking
it to the total dipole moment P in the medium, which involves the charges q in the medium,
the position function x of the charges, and the number of charges N .

P = Nqex

We may subsequently link the dipole moment to the permittivity ϵ,as such:

ϵ = ϵ0 +
P (t)

E(t)

Then it’s just a matter of algebra to link ϵ to the refractive index n, since n ≈ √
ϵr for

dielectrics. The subsequent expression for n2(ω) is exactly the equation which gives rise to
the dispersion curve. And indeed, when the natural frequency ω0 is equal to the driving
frequency ω, we note that the refractive index shoots up, with the damping term iγjω as
its only saving grace. Therein lies the relationship between the natural frequencies and the
dispersion curve of the material.

3. What is meant by normal dispersion? Why is it so called?

Normal dispersion are the regions of the n(ω) plot in which the refractive index is seen
to rise with increasing frequency. This is reasonable, as we see blue light (750 ∗ 1012 Hz) –
which is of higher frequency than red light (430 ∗ 1012 Hz) – being bent significantly greater
when exiting a prism. Normal dispersion is so called because it is what is often observed in
the index of refraction vs. frequency plot.
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4. What is anomalous dispersion? Why is it so called? What actually happens in those regions?

Anomalous dispersion are regions where the refractive index n is seen to shoot up or
plummet seemingly arbritrarily, at the resonant frequencies of the dielectric. It is called
anomalous because it is not often observed, and is seen only when ω ≈ ω0. If we neglect
the damping term, we see that ω = ω0 is a vertical asymptote for the refractive index n2(ω),
which explains why we see an abrupt jump or fall in the refractive index.

5 Derivation of Fresnel’s Equations

1. Starting with Fresnel’s Equations, derive the corresponding expressions in terms of trigono-
metric functions only.

I will not start with Fresnel’s Equations. Instead, I will begin at the very beginning, by
deriving the two boundary conditions needed to derive all four Fresnel’s Equations. I will
then use Snell’s Law to simplify the four equations to their requested form above.

Each of Maxwell’s four equations gives rise to a boundary condition, but we will need
only two – Ampere’s Law and Faraday’s Law. We begin with Ampere:

Figure 2: Amperian Loop constructed around two Mediums

One is justified in asking why we are employing Ampere’s Law in the first place2 to derive
boundary conditions. The answer is subtle, but important: to model the interface between the
two mediums, we may use exactly what Maxwell offers us: a Gaussian surface of nil height or
an Amperian Loop of zero width! Therein lies the key idea behind using Maxwell’s equations
to derive the boundary conditions.

By Ampere’s Law, we have ∮
B⃗ · ds⃗ = µ0I + µ0ε0

dΦE

dt

2Or any of the Maxwell’s Equations, for that matter
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Note that the vertical components B⊥1 and B⊥2 do not contribute to the line integral
on the top and bottom, but do indeed contribute to the line integral on the left and right
sides. However, the contribution that B⊥1

, for instance, makes on the left side line integral,
is exactly the same (but in opposing sign) to the contribution it makes on the right side line
integral. It thus cancels out its own contributions. Likewise for B⊥2 . On the other hand, the
horizontal components B∥1

and B∥2
do not contribute to the side line integrals, but do indeed

contribute to the top and bottom line integrals, and they survive!

B∥1
d−B∥2

d = µ0I + µ0ε0
dΦE

dt

But behold! As I shrink my Amperian Loop, letting L → 0, as was my intention all
along, I am left with no electric flux or current, since there is no closed loop to speak of. We
thus have

B∥1
d−B∥2

d = 0 → B∥1
= B∥2

And this is our first boundary condition. To obtain our second boundary condition, we
use an almost identical strategy, but with Faraday’s Law for the electric field E⃗, instead of
Ampere for B⃗.

Figure 3: Amperian Loop constructed around two Mediums

By Faraday’s Law, we have ∮
E⃗ ·

−→
ds = −dΦB

dt

Once again, only the horizontal components E∥1
and E∥2

make a contribution, and as
we let L → 0, we have

E∥1
= E∥2
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Behold, our second boundary condition. I will now proceed to derive all four of Fresnel’s
equations, which will subsequently be simplified using Snell’s Law. At this point, it is critically
important to understand the geometry of the situation. I was confused for a long time, for
instance, why the tangential components transmitting meant that E0i + E0r = E0t or why
we take the cos(θ) of B⃗ when E⃗ is perpendicular to the plane of incidence, and cos(θ) of E⃗

when B⃗ is perpendicular to the plane of incidence. Let me begin by addressing these two
confusions.

First of all, why does the tangential components transmitting imply that E0i+E0r = E0t?
To answer that question, it is helpful to consider an analogous scenario, in which we have
springs instead of electromagnetic waves.

Figure 4: Three Springs connected in Series

Would it not be reasonable to claim that at the junction point between the upper springs
and lower spring, the amplitude of all the springs must match? But wait – this would be
equivalent to requiring equal phase terms amongst E0i, E0r, and E0t. But if the phase terms
are equivalent and the amplitudes must match, that leaves us with only one option – that
the sum of the amplitudes of the two upper spring must equal to the amplitude of the lower
spring at the junction point! In other words, E⃗0i + E⃗0r = E⃗0t!

I will now address my second confusion: why was cos(θ) of E⃗ taken when it was parallel,

but not perpendicular to the plane of incidence (and likewise for B⃗)? The answer, unsurpris-
ingly, lies in the geometry of the situation. There is a very subtle thing going on, and that is
this: when the electric field vector E⃗ is perpendicular to the plane of incidence, it’s projection
is itself. Think about it for a moment, and you’ll realize why this is true. However, if you
start removing the plane of the incoming electric field even a bit, you’ve got to use cos(θ) to
bring its projection to the boundary and pass it through. This is a very key idea that relies
critically on geometric intuition.

Having addressed my two major confusions for Fresnel’s Equations, I now proceed to
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consider the case in which E⃗ is perpendicular to the plane of incidence. This results in

E⃗0i + E⃗0r = E⃗0t

Since B⃗ is in the plane, it’s projection is not itself, and we thus have

−Bi cos(θi) +Br cos(θr) = −Bt cos(θt)

The negative signs are due to the opposing directions of Bi and Bt. See diagram below.

Figure 5: Hand-Annotated version of Hecht Diagram (Resolution to Confusion 2)

To know what step to take next, it is worthwhile to remind ourselves of the ultimate goal:
to find the intensity of the reflected and transmitted beams. That is the ultimate utility of
Fresnel’s equations. But to find the intensity, we must obtain a ratio of the electric fields first.
To do so, we realize that we must convert the above equation involving B⃗ into one involving
E⃗. How so? Consider the relation

E = vB → B =
E

v

This relationship emerges from k⃗× E⃗ = −iωB⃗, which is a consequence of Faraday’s Law.
Substituting this relation into our equation, we have

− 1

vi
E0i cos(θi) +

1

vr
E0r cos(θr) = − 1

vt
E0t cos(θt)
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We recognize that as we are dealing with two dielectrics of different refractive indices, n
must somehow be involved in the final expression. We thus note an opportunity to introduce
n by multiplying both sides by c:

−niE0i cos(θi) + nrE0r cos(θr) = −ntE0t cos(θt)

But ni = nr (same medium) and θi = θr by the law of reflection!

−niE0i cos(θi) + nrE0r cos(θr) = −ntE0t cos(θt)

ni (E0i − Eor) cos θi = ntE0t cos θt

Substituting E⃗0i + E⃗0r = E⃗0t, we have (disregarding µ, as it is ≈ 1 for dielectrics)

ni

µi
E0i cos θi − nt

µt
E0i cos θt =

ni

µi
E0r cos θi +

nt

µt
E0 cos θt

E0i

(
ni

µi
cos θi − nt

µt
cos θt

)
= Eor

(
ni

µi
cos θi +

nt

µt
cos θt

)
It is now a matter of mere algebra, which ultimately leads to

r⊥ =

(
E0r

E0i

)
⊥
=

ni cos θi − nt cos θt
ni cos θi + nt cos θt

This is our first Fresnel equation, the amplitude reflection coefficient! To get the trans-
mission coefficient, we simply express E⃗0r in terms of E⃗0t:

E⃗0r = E⃗0t − E⃗0i

This gives our second Fresnel equation, the amplitude transmission coefficient!

t⊥ ≡
(
E0t

E0i

)
⊥
=

2ni cos θi
ni cos θi + nt cos θt

We are well on our way to our third Fresnel Equation, which begins much the same way
as our first two, but with one caveat: this time, the electric field E⃗ is parallel to the plane of
incidence, and B⃗ is perpendicular to it. How the tables have turned! We must now do to E⃗
what we once did to B⃗: project it onto the plane, since it’s projection is no longer itself. This
gives

E0i cos θi − Eor cos θr = E0t cos θt

And of course, this time there is no need to project B⃗, as its tangential component happily
transmits across the interface.

B⃗0i + B⃗0r = B⃗0t

We follow the same line of thought: introducing n where possible and simplifying the
expression, which gives

1

vi
E0i +

1

vr
E0r =

1

vt
Eot
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niEoi + nrEor = ntE0t

Leveraging the equality ni = nr, we have

cos(θi)(E0i − E0r) = cos(θt)E0t

But hang on – E0t =
ni

nt
(E0i + E0r) cos(θt), which gives

Eoi cos θi − E0 cos θr =
ni

nt
(Ei + E0r) cos θt

nt cos(θi) (E0i − E0r) = ni (E0i + E0r) cos(θt)

This results in our third Fresnel equation!

r∥ =
nt cos θi − ni cos θt
ni cos θt + nt cos θi

To find it’s transmission counterpart, we simply make the substitution

E0i cos θi −
(
nt

ni
E0t − E0i

)
cos θr = E0t cos θt

The rest is basic algebra, solving for the ratio of the electric fields:

2E0i cos θi −
nt

ni
E0t cos θr = E0t cos θt

2E0i cos θi = E0t

(
nt

ni
cos θr + cos θt

)
Eot

E0i
=

2 cos θi
nt

ni
cos θr + cos θt

One last simplification, and we have the transmission coefficient for an electric field
parallel to the plane of incidence!

t∥ =

(
E0t

E0i

)
∥
=

2ni cos(θi)

nt cos(θi) + ni cos(θt)

Now that we have our four Fresnel’s equations, let’s simplify them using Snell’s Law. We
begin with the reflection coefficient for E⃗ perpendicular to the plane of incidence:

r⊥ =

(
Eor

Eoi

)
⊥
=

ni cos θi − ni
sin θi
sin θt

ηi cos θi + ηi
sin θi
sin θt

r⊥ =

(
Eor

Eoi

)
⊥
= − sin(θi) cos(θt)− cos(θi) sin(θt)

sin(θi) cos(θt) + cos(θi) sin(θt)
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Notice that this is nothing but the sum and difference of sines:

r⊥ = − sin(θi − θt)

sin(θi + θt)

We now proceed to repeat this for the transmission coefficient for the electric field per-
pendicular to the plane of incidence. Since

ni sin θi = nt sin θt → nt = ni
sin θi
sin θt

We can make the substitution into the transmission coefficient, which gives

t⊥ =
2ni cos θi

ni cos θi +
(
ni

sin θi
sin θt

)
cos θt

Multiplying the numerator and denominator by sin(θt), we have

t⊥ =
2ni sin θt cos θi

ni cos θi sin θt + ni cos θt sin θi

A final algebraic simplification reduces the denominator to a sum of sines, which gives

t⊥ =
2ni sin θt cos θi
ni (sin (θi + θt))

→ t⊥ =
2 sin θt cos θi
sin (θi + θt)

We now consider the reflection coefficient for the parallel case, which proceeds similarly:

r11 =

(
ni

sin θi
sin θt

)
cos θi − ni cos θt

ni cos θt +
(
ni

sin θi
sin θt

)
cos θi

Multiplying through by sin(θt), we have

r11 =
ni sin θi cos θi − ni cos θt sin θt
ni cos θt sin θt + ni sin θi cos θi

A final rearranging of the terms and cancellation of ni reveals a striking similarity between
the numerator and denominator:

r∥ =
sin θi cos θi − cos θt sin θt
sin θi cos θi + cos θt sin θt

And now, for our final fresnel simplification, we have

t∥ =
2ni cos θi

ni cos θt +
(

ni sin θi
sin θt

)
cos θi
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Multiplying through by sin(θt), we have

t∥ =
2ni sin θt cos θi

ni sin θt cos θt + ni sin θi cos θi

Finally, from the ashes, rises our transmission coefficient, simplified using Snell’s Law:

t∥ =
2 sin θt cos θi

sin θt cos θt + sin θi cos θi

I have thus derived the two boundary conditions, derived all four of Fresnel’s Equations,
and simplified all four using Snell’s Law.

6 Transmitted and Reflected Intensity

1. Find the intensity of the reflected beam and that of the transmitted beam independently.

I struggled with this question for a long time because I wasn’t sure how to handle the
unpolarized nature of natural light. My first idea was to decompose the electric field vector E⃗
into a vector half-polarized parallel and half-polarized perpendicular to the field, and likewise
for B⃗, but I wasn’t sure how to apply that to find the actually intensities.

2. Find the angle of incidence for which the reflected light will be completely plane polarized.

This is a simple application of Brewster’s angle, which requires θp = π
2 − θt, which gives

tan(θp) =
n2

n1
=

1.52

1.33
→ 49.0001◦

7 Near Normal Incidence

1. Show that at near-normal incidence, the reflection coefficient may be approximated as

[−r⊥]θi ≃ 0 = [(n− 1)/(n+ 1)]×
[
1 +

(
θ2i
)
/n
]

Our first order of business will be to ”normalize” the indices of refraction by considering
ni = 1 and nt = n, which significantly simplifies our expression to

r⊥ =
cos θi − n cos θt
cos θi + n cos θt

Similar to the case for r∥, we now leverage the taylor expansion of cos(θ):

cos(θ) ≈ 1− θ2

2

Which may be substituted into r⊥ to give

r⊥ =

(
1− θ2

i

2

)
− n

(
1− θ2

t

2

)
(
1− θ2

i

2

)
+ n

(
1− θ2

t

2

)
14



We now leverage Snell’s Law, combined with the small-angle approximation for θ, which
gives θt =

θi
n :

r⊥ =

(
1− θ2

i

2

)
− n

(
1− θ2

i

2n2

)
(
1− θ2

i

2

)
+ n

(
1− θ2

i

2n2

) =
1− θ2

i

2 − n+ n
θ2
i

2n2

1− θ2
i

2 + n− n
θ2
i

2n2

Factoring out common terms, we have

r⊥ =
(1− n) +

θ2
i

2

(
1
n − 1

)
(1 + n) +

θ2
i

2

(
− 1

n − 1
)

Noting a common (1− n) and (1 + n), we have

r⊥ =
(1− n)

[
1 +

θ2
i

2n

]
(1 + n)

[
1− θ2

i

2n

]
We may now taylor expand 1

1−x as 1 + x, which gives

r⊥ =
1− n

1 + n

(
1 +

θ2

2n

)(
1 +

θ2

2n

)
=

1− n

1 + n

(
1 +

θ2

2n

)2

Expanding the binomial term, we conclude with our desired result

−r⊥ =
n− 1

n+ 1

(
1 +

θ2i
n

+O(θ4i )

)
→ (−r⊥)θi≈0 =

n− 1

n+ 1

(
1 +

θ2i
n

)

8 Parallel-Polarized Reflection Coefficient

1. Starting with the relevant Fresnel equation, obtain an expression for r∥ in terms of the angle
of incidence and relative index of refraction nti =

nt

ni
. Show that for total internal reflection,

r∥ is a complex quantity and R∥ = 1.

We begin by considering r∥ as is, and dividing through by ni, which gives

r∥ =
nt cos θr − ni cos θt
nt cos θr + ni cos θt

·
1
ni

1
ni

=
nti cos θr − cos θt
nti cos θr + cos θt

Since ni sin(θi) = nt → nti = sin(θi), we have

r∥ =
sin θr cos θr − cos θt
sin θr cos θr + cos θt

Simplifying further, we have

r∥ =
1
2 sin (2θi)− cos θt
1
2 tin (2θi) + cos θt
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Our desired result is thus

r∥ =
sin (2θi)− 2 cos θt

sin (2θi) + 2 cos θt

For total internal reflection, we have θt = 90◦, which results in cos(θt) = 1, which gives

R = r ∗∥ r∥ = 1

9 Snell’s Cone

1. A fish looking straight up at a smooth surface of a pond sees a circular field surrounded by
darkness. Explain what is happening. If the fish is at a depth D from the surface and the
refraction index of the water is n, find the cone-angle and area of the circular field. Find the
angle of the cone-angle.

This is a most interesting phenomenon, which I suspect occurs due to something involving
the critical angle. If the fish is looking straight up vertically, he will of course see what is
directly above him, but as the angle between the light rays emerging from his fish eyes and the
surface of the pond gradually increases, at some point, the refracted beam will hit the critical
angle, at which point there will be no refraction, and utter darkness for the fish. Furthermore,
since light is moving from a denser to a lighter medium (water to air), that makes it all the
more likely that the light rays are diverging further from the normal, and hitting the critical
angle at an earlier point, resulting in a darkness surrounding the circular field of view. As the
critical angle from water to air is 1.33 sin(θi) = sin(0) → θi = 48.75, the cone angle should be
π
2 − 48.75 = 41.24◦ . The area of the cone is elementary to deduce, as we now have the angle
of the cone (with respect to the surface normal) and the fish’s distance D from the surface.
The radius of the circular field of view should thus be D sin(θ) = D sin(41.24), which would
give an area of A = π(D sin(41.24))2.
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